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Abstract
In this viewpoint article we analyse recent crucial structural, optical and transport experiments
on Fe3O4 magnetite across the Verwey transition at TV ∼ 120–125 K. We find that all the
relevant experimental data are consistent with a model of a Peierls distortion in the cubic spinel
lattice, and likewise, some of them evidence against the original and still distributed hypothesis
of the long range charge ordering origin of the Verwey transition. An estimated Peierls
transition temperature (TP) is comparable with TV. The Peierls model provides new insight into
the electronic properties of magnetite. Application of the Peierls model to some other systems
is briefly discussed also.

(Some figures in this article are in colour only in the electronic version)

At ambient conditions, magnetite, Fe3+
2 Fe2+O4, adopts a

cubic spinel structure (space group Fd 3̄m) with the inverse
electronic configuration [Fe3+]A[Fe2+ + Fe3+]BO4 [1], where
A and B mean respectively the tetrahedral and the octahedral
sites in the spinel structure (figure 1); a precise Fe2+/Fe3+ ratio
at the B sites still being a point at issue [2, 3]. Below TV ∼
120–125 K magnetite exhibits a ‘metal–insulator’ transition
(called the Verwey transition (VT)) at which the electrical
resistivity abruptly rises by ∼2 orders of magnitude [4]
(figure 2(a)). The first tentative addressing of this transition
to ordering of the Fe ions (charges, Fe2+, and vacancies,
Fe3+) on the B sites [4, 5] has become commonly adopted.
Some charge ordering was in fact experimentally detected in
the insulator phase [6–9]. Speculative theoretical models (for
example [10–16]) explain in masterly way how this long range
charge ordering could drive this ‘metal–insulator’ transition.

On the other hand, it was established that the VT is
concurrent with a structural transformation [17–20]. However,
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only a tiny hysteresis is noticed in the temperature dependences
of the electrical resistivity for direct and return cycles (for
example [21]). This circumstance supports a leadership of
the electronic transition rather than that of the structural
one. Notice that a hysteresis loop may depend on several
factors [22, 23], and for instance, in a case of manganites
which undergo a transition to a stripe phase a variation in a
hysteresis loop was observed [22–24]. Thus, it was believed
that magnetite exhibits a unique ‘metal–insulator’ transition
which is driven by the enigmatic charge ordering.

Recently, it was shown that a pressure–temperature
boundary of the structural transition [25] coincides well with a
one for the VT established from electrical resistivity [26, 27];
this challenges the original interpretation of the origin of the
VT [4] and calls into being a dispute concerning a driving
factor of the VT (electronic or structural) [25]. Another recent
study of electrical and galvanomagnetic properties across the
VT in fast neutron bombarded magnetite revealed that the
disordering leads to only a tiny shift in TV (figure 2(b)) [28].
This finding gives evidence against the charge ordering
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Figure 1. The structure of Fe3O4 magnetite may be imagined as a sandwich of two kinds of layers labelled as A and B [21]. The vertical
dashed line in (a) shows a demarcation gap in the ‘octahedral lattice’. In (b) a fragment of the structure showing the Fe ions on the tetrahedral
and octahedral sites is given [58].

Figure 2. The temperature dependences of the electrical and Hall resistivity of Fe3O4 magnetite. Plot (a) shows the ‘metal–insulator’ Verwey
transition near TV ∼ 125 K (pointed out by the arrow), 1—for a stoichiometric single crystal from [28] and 2—for a thin film from [21]. Plot
(b) shows a small decrease in TV after the fast neutron bombardment (from [28]): 1 and 3—the electrical resistivity and 2 and 4—the Hall
resistivity at 13.6 T, before (1, 2) and after (3, 4) the fast neutron bombardment.

mechanism of the VT, while it tolerates a structural one, such
as Peierls distortion [29]. Effects of various types of disorder
on Peierls transitions have been theoretically considered for
1D [30], 2D and 3D substances [31–33]. For examples of
a number of compounds it was derived that the transition
weakly depends on a long range ordering, i.e. it can occur
in crystalline, amorphous or liquid states [33]. Lattice
imperfections and impurities were found to lead primarily
to a broadening of the transition [31, 32, 34]. In the case
of magnetite the Verwey transition in polycrystalline films
is normally smoothed in comparison with the one in single
crystals (figure 2(a)). The behaviour of TV in magnetite
under variation in its mesostructure (nanofilms, nanoparticles,

partially amorphous films, etc) is controversial: some works
reported a significant decrease in TV (e.g. down to 80 K [35])
and even non-observation of the VT (i.e. its complete smearing;
e.g. [36]), while others found no influence at all (e.g. [37, 38]).
This divergence might be related to a very strong dependence
of TV on a nonstoichiometry [39, 40], which is not always
properly controlled during sample preparation.

We propose that a Peierls distortion mechanism [29] could
explain the VT in Fe3O4. In fact, this model fits well with the
known experimental data as follows.

(i) Below TV, structural studies revealed a doubling of the
cubic unit cell along the c axis as well as a lowering
of the symmetry to monoclinic [18–20]. The unit

2



J. Phys.: Condens. Matter 21 (2009) 271001 Viewpoint

cell of the Verwey phase was established to consist
of four rhombohedrally distorted cells of the cubic
phase [8, 14, 41, 42]. Furthermore, it was found that the
charge fluctuations of both the iron ions (at the B sites)
and the 2p orbitals of the oxygen atoms have a period
which is equal to a double lattice constant along the c
axis [8, 14, 41, 42].

(ii) Photoemission spectroscopy experiments established the
opening of an energy gap of ∼0.05–0.07 eV at the
VT [43, 44]; the abrupt growth in the electrical resistivity
on the VT [4] also hints at the opening of an energy gap.

(iii) Raman spectroscopy across the VT revealed a dramatic
propagation of active phonon modes on the VT: from five
at the cubic lattice to thirteen at the Verwey phase [45, 46].
This suggests at least a double folding of the Brillouin
zone [45, 46], i.e. a doubling of the lattice parameter.

The aforesaid properties correspond to a basic set of char-
acteristics for Peierls-distortion-driven transitions [29, 47, 48].
Originally, the Peierls distortion mechanism of transitions was
established by Peierls for a 1D metal with a half-filled electron
band [29]. A lattice distortion with a concurrent doubling of
the lattice parameter was shown to be energetically profitable
due to opening of a semiconductor gap at the Fermi level and a
corresponding lowering of the electron energy [29]. Later, this
approach was been extended to numerous classes of 2D and
3D structures by consideration of 1D atomic chains along per-
pendicular X , Y , and Z axes for ‘ideal’ undistorted cubic lat-
tices [47–50]. The model of Peierls distortion is successfully
applied for the explanation of physical phenomena in a wide
range of 1D–3D materials. For instance, it has demonstrated
its efficiency in analysis of: (i) a transition to exotic stripe
phases in manganites [22–24], (ii) a heat capacity anomaly in
α-uranium [34, 51], (iii) a mechanism of martensitic transition
in AuZn alloy with a shape-memory effect [52, 53], (iv) an
impurity effect on a magnetic susceptibility in ‘blue bronze’
K0.3MoO3 [32], and other engaging phenomena.

A lowering of the electron energy at the Peierls transition
is expressed as follows: �Eband = −�2

W ln( W
�

), where W is the
bandwidth, and � is the amplitude of potential for an electron
with a wavevector 2kF (kF is the Fermi wavevector) [29, 48]. A
Peierls transition occurs when the above �Eband value exceeds
an elastic energy of distortion (�Elattice = 1

2 mω2(ukF)
2, where

ukF is the displacement amplitude and ω is the LA phonon
frequency) [26, 48]. Upon rise in temperature a hopping of
carriers over the Peierls gap Eg = 2� decreases the gap value
and at a certain temperature TP ≈ 2�(T = 0)/3.5 the gap is
closed [29]. The estimations performed below show that TP is
comparable with TV.

On the VT the charge carrier concentration (n) dropped
by ∼150 times [28]. Likewise, the absolute value of the
thermopower |S| increased by a factor of 2–3 [54, 55]. Using
the expressions for the thermopower and the concentration as
follows: S = k

e
Ea
kT and n = n0 exp(− Ea

kT ), where Ea is the
activation energy, k is Boltzmann’s constant, e is the electron
charge, and n0 is the pre-exponential factor (its variation was
disregarded) [56], one can estimate the energy gap (Ea) at
∼0.02–0.04 eV. Then, putting 2� = Ea, the temperature
of a Peierls transition is found as TP ∼ 60–130 K, i.e. it is

comparable with TV = 120–125 K [4]. From photoemission
spectroscopy data (Eg ∼ 0.05–0.07 eV) [43, 44] the higher
values of TP ∼ 170–200 K may be obtained.

Notice that applied pressure of 6–8 GPa abruptly
suppresses the VT [26, 27]. This correlates with a circumstance
that Peierls-distorted lattices normally have a lowered density
and external pressure that exceeds some critical value is able to
remove this distortion [33, 47, 50].

Previous studies on Peierls transitions in elemental solids
and compounds inferred a dominant role of p electrons in
the bonding (the so called ‘p model’) [33, 47, 50]. Thus, p
electrons assist in the formation of six rectangular bonds along
X , Y , and Z axes at undistorted ‘ideal’ cubic phase (with a
simple cubic or rock-salt (NaCl) lattice) [33, 47, 50]. A filling
of the p band (e.g. by 1

2 , 1
3 , etc) determines a factor of the

lattice enlarging (respectively, by 2, 3, etc times) [33, 47, 48].
The crystal structure of magnetite may be imagined as a
rock-salt lattice, in which 50% of sites for Fe atoms are
vacant (figure 1(a), right), and furthermore, there are built-
in chains of the tetrahedrally coordinated Fe ions and gaps
(figure 1(a), left). Thus, the lattice constitutes a 3D rectangular
net, which is demarcated in the (110) planes and cross-linked
by the tetrahedrally coordinated Fe ions (figure 1). It seems
interesting to estimate the population of the general p band of
the ‘octahedral lattice’ (i.e. ‘Fe2O4’) of magnetite (figure 1)
in terms of the ‘p model’ [33, 47]. For the conventional
electron configuration of the iron atom (3d64s2) the p band
of the ‘octahedral lattice’ has to be filled with electrons to
approximately a half (∼ 4

9 ). Iron atoms may have also different
configurations, namely, 3d54s24p1 and 3d64s14p1 [57]. Then,
if the Fe3+ and Fe2+ ions in ‘Fe2O4’ adopt these configurations,
the population equals exactly 1

2 ; if only the Fe3+ ions adopt
them, it is 17

36 [57]. Therefore, the necessary conditions for a
Peierls distortion of the lattice are indeed fulfilled.

In summary, we may infer that the Verwey transition in
magnetite may be well explained by the Peierls distortion
mechanism. Accounting for other recent successive applica-
tions of the Peierls model, for instance, for ‘stripy’ phases in
manganites [22–24], uranium [34, 51], AuZn [52, 53], and oth-
ers, one may surmise that the model is more current than they
believed earlier. This suggests that the Peierls model may be
fruitful for analysis of other materials as well.
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